Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Hum Cell ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615309

RESUMO

We aimed to elucidate the mechanism underlying carcinogenesis by comparing normal and BRCA1/2-mutated ovarian epithelial cells established via Sendai virus-based immortalization. Ovarian epithelial cells (normal epithelium: Ovn; with germline BRCA1 mutation: OvBRCA1; with germline BRCA2 mutation: OvBRCA2) were infected with Sendai virus vectors carrying three immortalization genes (Bmi-1, hTERT, and SV40T). The immunoreactivity to anti-epithelial cellular adhesion molecule (EpCAM) antibodies in each cell line and cells after 25 passages was confirmed using flow cytometry. Chromosomes were identified and karyotyped to detect numerical and structural abnormalities. Total RNA extracted from the cells was subjected to human transcriptome sequencing. Highly expressed genes in each cell line were confirmed using real-time polymerase chain reaction. Immortalization techniques allowed 25 or more passages of Ovn, OvBRCA1, and OvBRCA2 cells. No anti-EpCAM antibody reactions were observed in primary cultures or after long-term passages of each cell line. Structural abnormalities in the chromosomes were observed in each cell line; however, the abnormal chromosomes were successfully separated from the normal structures via cloning. Only normal cells from each cell line were cloned. MMP1, CCL2, and PAPPA were more predominantly expressed in OvBRCA1 and OvBRCA2 cells than in Ovn cells. Immortalized ovarian cells derived from patients with germline BRCA1 or BRCA2 mutations showed substantially higher MMP1 expression than normal ovarian cells. However, the findings need to be validated in the future.

2.
Pharmacol Res Perspect ; 12(3): e1197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644590

RESUMO

Human cytochrome P450 3A4 (CYP3A4) is a drug-metabolizing enzyme that is abundantly expressed in the liver and intestine. It is an important issue whether compounds of interest affect the expression of CYP3A4 because more than 30% of commercially available drugs are metabolized by CYP3A4. In this study, we examined the effects of cholesterol and cholic acid on the expression level and activity of CYP3A4 in hCYP3A mice that have a human CYP3A gene cluster and show human-like regulation of the coding genes. A normal diet (ND, CE-2), CE-2 with 1% cholesterol and 0.5% cholic acid (HCD) or CE-2 with 0.5% cholic acid was given to the mice. The plasma concentrations of cholesterol, cholic acid and its metabolites in HCD mice were higher than those in ND mice. In this condition, the expression levels of hepatic CYP3A4 and the hydroxylation activities of triazolam, a typical CYP3A4 substrate, in liver microsomes of HCD mice were higher than those in liver microsomes of ND mice. Furthermore, plasma concentrations of triazolam in HCD mice were lower than those in ND mice. In conclusion, our study suggested that hepatic CYP3A4 expression and activity are influenced by the combination of cholesterol and cholic acid in vivo.


Assuntos
Colesterol , Ácido Cólico , Citocromo P-450 CYP3A , Fígado , Microssomos Hepáticos , Triazolam , Ácido Cólico/metabolismo , Animais , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Microssomos Hepáticos/metabolismo , Colesterol/metabolismo , Colesterol/sangue , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Triazolam/farmacocinética , Triazolam/metabolismo , Humanos , Camundongos Transgênicos , Hidroxilação
3.
Nucleic Acids Res ; 52(3): 1498-1511, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38180813

RESUMO

A 'genomically' humanized animal stably maintains and functionally expresses the genes on human chromosome fragment (hCF; <24 Mb) loaded onto mouse artificial chromosome (MAC); however, cloning of hCF onto the MAC (hCF-MAC) requires a complex process that involves multiple steps of chromosome engineering through various cells via chromosome transfer and Cre-loxP chromosome translocation. Here, we aimed to develop a strategy to rapidly construct the hCF-MAC by employing three alternative techniques: (i) application of human induced pluripotent stem cells (hiPSCs) as chromosome donors for microcell-mediated chromosome transfer (MMCT), (ii) combination of paclitaxel (PTX) and reversine (Rev) as micronucleation inducers and (iii) CRISPR/Cas9 genome editing for site-specific translocations. We achieved a direct transfer of human chromosome 6 or 21 as a model from hiPSCs as alternative human chromosome donors into CHO cells containing MAC. MMCT was performed with less toxicity through induction of micronucleation by PTX and Rev. Furthermore, chromosome translocation was induced by simultaneous cleavage between human chromosome and MAC by using CRISPR/Cas9, resulting in the generation of hCF-MAC containing CHO clones without Cre-loxP recombination and drug selection. Our strategy facilitates rapid chromosome cloning and also contributes to the functional genomic analyses of human chromosomes.


Assuntos
Clonagem Molecular , Animais , Cricetinae , Humanos , Camundongos , Cromossomos Artificiais , Clonagem Molecular/métodos , Cricetulus , Sistemas CRISPR-Cas , DNA , Edição de Genes , Células-Tronco Pluripotentes Induzidas , Translocação Genética
4.
Drug Metab Dispos ; 52(2): 80-85, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071551

RESUMO

Previous studies have suggested that the incidence of vincristine-induced peripheral neuropathy (VIPN) is potentially linked with cytochrome P450 (CYP)3A5, a polymorphic enzyme that metabolizes vincristine in vitro, and with concurrent use of azole antifungals such as ketoconazole. The assumed mechanism for these interactions is through modulation of CYP3A-mediated metabolism, leading to decreased vincristine clearance and increased susceptibility to VIPN. Given the controversy surrounding the contribution of these mechanisms, we directly tested these hypotheses in genetically engineered mouse models with a deficiency of the entire murine Cyp3a locus [Cyp3a(-/-) mice] and in humanized transgenic animals with hepatic expression of functional and nonfunctional human CYP3A5 variants. Compared with wild-type mice, the systemic exposure to vincristine was increased by only 1.15-fold (95% confidence interval, 0.84-1.58) in Cyp3a(-/-) mice, suggesting that the clearance of vincristine in mice is largely independent of hepatic Cyp3a function. In line with these observations, we found that Cyp3a deficiency or pretreatment with the CYP3A inhibitors ketoconazole or nilotinib did not influence the severity and time course of VIPN and that exposure to vincristine was not substantially altered in humanized CYP3A5*3 mice or humanized CYP3A5*1 mice compared with Cyp3a(-/-) mice. Our study suggests that the contribution of CYP3A5-mediated metabolism to vincristine elimination and the associated drug-drug interaction potential is limited and that plasma levels of vincristine are unlikely to be strongly predictive of VIPN. SIGNIFICANCE STATEMENT: The current study suggests that CYP3A5 genotype status does not substantially influence vincristine disposition and neurotoxicity in translationally relevant murine models. These findings raise concerns about the causality of previously reported relationships between variant CYP3A5 genotypes or concomitant azole use with the incidence of vincristine neurotoxicity.


Assuntos
Citocromo P-450 CYP3A , Cetoconazol , Humanos , Animais , Camundongos , Vincristina/toxicidade , Vincristina/metabolismo , Vincristina/uso terapêutico , Citocromo P-450 CYP3A/genética , Cetoconazol/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Genótipo , Azóis
5.
iScience ; 26(12): 108379, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025769

RESUMO

Down syndrome (DS) results from trisomy of human chromosome 21 (HSA21), and DS research has been conducted by the use of mouse models. We previously generated a humanized mouse model of DS, TcMAC21, which carries the long arm of HSA21. These mice exhibit learning and memory deficits, and may reproduce neurodevelopmental alterations observed in humans with DS. Here, we performed histologic studies of the TcMAC21 forebrain from embryonic to adult stages. The TcMAC21 neocortex showed reduced proliferation of neural progenitors and delayed neurogenesis. These abnormalities were associated with a smaller number of projection neurons and interneurons. Further, (phospho-)proteomic analysis of adult TcMAC21 cortex revealed alterations in the phosphorylation levels of a series of synaptic proteins. The TcMAC21 mouse model shows similar brain development abnormalities as DS, and will be a valuable model to investigate prenatal and postnatal causes of intellectual disability in humans with DS.

6.
Mol Ther Nucleic Acids ; 33: 444-453, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37588685

RESUMO

Mammalian artificial chromosomes have enabled the introduction of extremely large amounts of genetic information into animal cells in an autonomously replicating, nonintegrating format. However, the evaluation of human artificial chromosomes (HACs) as novel tools for curing intractable hereditary disorders has been hindered by the limited efficacy of the delivery system. We generated dystrophin gene knockout (DMD-KO) pigs harboring the HAC bearing the entire human DMD via a somatic cell cloning procedure (DYS-HAC-cloned pig). Restored human dystrophin expression was confirmed by immunofluorescence staining in the skeletal muscle of the DYS-HAC-cloned pigs. Viability at the first month postpartum of the DYS-HAC-cloned pigs, including motor function in the hind leg and serum creatinine kinase level, was improved significantly when compared with that in the original DMD-KO pigs. However, decrease in systemic retention of the DYS-HAC vector and limited production of the DMD protein might have caused severe respiratory impairment with general prostration by 3 months postpartum. The results demonstrate that the use of transchromosomic cloned pigs permitted a straightforward estimation of the efficacy of the DYS-HAC carried in affected tissues/organs in a large-animal disease model, providing novel insights into the therapeutic application of exogenous mammalian artificial chromosomes.

7.
Biochem Pharmacol ; 215: 115733, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543347

RESUMO

Pregnane X receptor (PXR) is one of the key regulators of drug metabolism, gluconeogenesis, and lipid synthesis in the human liver. Activation of PXR by drugs such as rifampicin, simvastatin, and efavirenz causes adverse reactions such as drug-drug interaction, hyperglycemia, and dyslipidemia. The inhibition of PXR activation has merit in preventing such adverse events. Here, we demonstrated that bromodomain containing protein 9 (BRD9), a component of non-canonical brahma-related gene 1-associated factor (ncBAF), one of the chromatin remodelers, interacts with PXR. Rifampicin-mediated induction of CYP3A4 expression was attenuated by iBRD9, an inhibitor of BRD9, in human primary hepatocytes and CYP3A/PXR-humanized mice, indicating that BRD9 enhances the transcriptional activation of PXR in vitro and in vivo. Chromatin immunoprecipitation assay reveled that iBRD9 treatment resulted in attenuation of the rifampicin-mediated binding of PXR to the CYP3A4 promoter region, suggesting that ncBAF functions to facilitate the binding of PXR to its response elements. Efavirenz-induced hepatic lipid accumulation was attenuated by iBRD9 in C57BL/6J mice, suggesting that the inhibition of BRD9 would be useful to reduce the risk of efavirenz-induced hepatic steatosis. Collectively, we found that inhibitors of BRD9, a component of ncBAF that plays a role in assisting transactivation by PXR, would be useful to reduce the risk of PXR-mediated adverse reactions.


Assuntos
Citocromo P-450 CYP3A , Receptores de Esteroides , Humanos , Camundongos , Animais , Receptor de Pregnano X/genética , Ativação Transcricional , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Rifampina/farmacologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatócitos/metabolismo , Lipídeos , Fatores de Transcrição/metabolismo
8.
Mol Ther Nucleic Acids ; 33: 391-403, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37547291

RESUMO

Microcell-mediated chromosome transfer is an attractive technique for transferring chromosomes from donor cells to recipient cells and has enabled the generation of cell lines and humanized animal models that contain megabase-sized gene(s). However, improvements in chromosomal transfer efficiency are still needed to accelerate the production of these cells and animals. The chromosomal transfer protocol consists of micronucleation, microcell formation, and fusion of donor cells with recipient cells. We found that the combination of Taxol (paclitaxel) and reversine rather than the conventional reagent colcemid resulted in highly efficient micronucleation and substantially improved chromosomal transfer efficiency from Chinese hamster ovary donor cells to HT1080 and NIH3T3 recipient cells by up to 18.3- and 4.9-fold, respectively. Furthermore, chromosome transfer efficiency to human induced pluripotent stem cells, which rarely occurred with colcemid, was also clearly improved after Taxol and reversine treatment. These results might be related to Taxol increasing the number of spindle poles, leading to multinucleation and delaying mitosis, and reversine inducing mitotic slippage and decreasing the duration of mitosis. Here, we demonstrated that an alternative optimized protocol improved chromosome transfer efficiency into various cell lines. These data advance chromosomal engineering technology and the use of human artificial chromosomes in genetic and regenerative medical research.

9.
Neurobiol Dis ; 184: 106198, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315904

RESUMO

Children with Down syndrome (DS, trisomy of chromosome 21) have an increased risk of infantile spasms (IS). As an epileptic encephalopathy, IS may further impair cognitive function and exacerbate neurodevelopmental delays already present in children with DS. To investigate the pathophysiology of IS in DS, we induced IS-like epileptic spasms in a genetic mouse model of DS that carries human chromosome 21q, TcMAC21, the animal model most closely representing gene dosage imbalance in DS. Repetitive extensor/flexor spasms were induced by the GABAB receptor agonist γ-butyrolactone (GBL) and occurred predominantly in young TcMAC21 mice (85%) but also in some euploid mice (25%). During GBL application, background electroencephalographic (EEG) amplitude was reduced, and rhythmic, sharp-and-slow wave activity or high-amplitude burst (epileptiform) events emerged in both TcMAC21 and euploid mice. Spasms occurred only during EEG bursts, but not every burst was accompanied by a spasm. Electrophysiological experiments revealed that basic membrane properties (resting membrane potential, input resistance, action-potential threshold and amplitude, rheobase, input-output relationship) of layer V pyramidal neurons were not different between TcMAC21 mice and euploid controls. However, excitatory postsynaptic currents (EPSCs) evoked at various intensities were significantly larger in TcMAC21 mice than euploid controls, while inhibitory postsynaptic currents (IPSCs) were similar between the two groups, resulting in an increased excitation-inhibition (E-I) ratio. These data show that behavioral spasms with epileptic EEG activity can be induced in young TcMAC21 DS mice, providing proof-of-concept evidence for increased IS susceptibility in these DS mice. Our findings also show that basic membrane properties are similar in TcMAC21 and euploid mice, while the neocortical E-I balance is altered to favor increased excitation in TcMAC21 mice, which may predispose to IS generation.


Assuntos
Síndrome de Down , Epilepsia , Neocórtex , Espasmos Infantis , Humanos , Criança , Camundongos , Animais , Espasmos Infantis/genética , Síndrome de Down/genética , Espasmo , Agonistas dos Receptores de GABA-B , Eletroencefalografia , Modelos Animais de Doenças
10.
Elife ; 122023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249575

RESUMO

The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.


Assuntos
Músculo Esquelético , Termogênese , Camundongos , Humanos , Animais , Músculo Esquelético/metabolismo , Termogênese/genética , Metabolismo Energético/fisiologia , Proteolipídeos/metabolismo , Citoplasma/metabolismo , Cromossomos Humanos/metabolismo , Cálcio/metabolismo
11.
Sci Rep ; 13(1): 4360, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928364

RESUMO

Dystrophin maintains membrane integrity as a sarcolemmal protein. Dystrophin mutations lead to Duchenne muscular dystrophy, an X-linked recessive disorder. Since dystrophin is one of the largest genes consisting of 79 exons in the human genome, delivering a full-length dystrophin using virus vectors is challenging for gene therapy. Human artificial chromosome is a vector that can load megabase-sized genome without any interference from the host chromosome. Chimeric mice carrying a 2.4-Mb human dystrophin gene-loaded human artificial chromosome (DYS-HAC) was previously generated, and dystrophin expression from DYS-HAC was confirmed in skeletal muscles. Here we investigated whether human dystrophin expression from DYS-HAC rescues the muscle phenotypes seen in dystrophin-deficient mice. Human dystrophin was normally expressed in the sarcolemma of skeletal muscle and heart at expected molecular weights, and it ameliorated histological and functional alterations in dystrophin-deficient mice. These results indicate that the 2.4-Mb gene is enough for dystrophin to be correctly transcribed and translated, improving muscular dystrophy. Therefore, this technique using HAC gives insight into developing new treatments and novel humanized Duchenne muscular dystrophy mouse models with human dystrophin gene mutations.


Assuntos
Cromossomos Artificiais Humanos , Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Cromossomos Artificiais Humanos/genética , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Sarcolema/metabolismo
12.
Sci Rep ; 13(1): 4225, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918661

RESUMO

We previously generated fully human antibody-producing TC-mAb mice for obtaining potential therapeutic monoclonal antibodies (mAbs). In this study, we investigated 377 clones of fully human mAbs against a tumor antigen, epithelial cell adhesion molecule (EpCAM), to determine their antigen binding properties. We revealed that a wide variety of mAbs against EpCAM can be obtained from TC-mAb mice by the combination of epitope mapping analysis of mAbs to EpCAM and native conformational recognition analysis. Analysis of 72 mAbs reacting with the native form of EpCAM indicated that the EpCL region (amino acids 24-80) is more antigenic than the EpRE region (81-265), consistent with numerous previous studies. To evaluate the potential of mAbs against antibody-drug conjugates, mAbs were directly labeled with DM1, a maytansine derivative, using an affinity peptide-based chemical conjugation (CCAP) method. The cytotoxicity of the conjugates against a human colon cancer cell line could be clearly detected with high-affinity as well as low-affinity mAbs by the CCAP method, suggesting the advantage of this method. Thus, this study demonstrated that TC-mAb mice can provide a wide variety of antibodies and revealed an effective way of identifying candidates for fully human ADC therapeutics.


Assuntos
Neoplasias do Colo , Imunoconjugados , Humanos , Camundongos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Molécula de Adesão da Célula Epitelial , Antígenos de Neoplasias , Neoplasias do Colo/patologia , Anticorpos Monoclonais
13.
Dis Model Mech ; 16(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995257

RESUMO

Trisomy 21 and mutations in the Sonic hedgehog (SHH) signaling pathway cause overlapping and pleiotropic phenotypes including cerebellar hypoplasia, craniofacial abnormalities, congenital heart defects and Hirschsprung disease. Trisomic cells derived from individuals with Down syndrome possess deficits in SHH signaling, suggesting that overexpression of human chromosome 21 genes may contribute to SHH-associated phenotypes by disrupting normal SHH signaling during development. However, chromosome 21 does not encode any known components of the canonical SHH pathway. Here, we sought to identify chromosome 21 genes that modulate SHH signaling by overexpressing 163 chromosome 21 cDNAs in a series of SHH-responsive mouse cell lines. We confirmed overexpression of trisomic candidate genes using RNA sequencing in the cerebella of Ts65Dn and TcMAC21 mice, model systems for Down syndrome. Our findings indicate that some human chromosome 21 genes, including DYRK1A, upregulate SHH signaling, whereas others, such as HMGN1, inhibit SHH signaling. Individual overexpression of four genes (B3GALT5, ETS2, HMGN1 and MIS18A) inhibits the SHH-dependent proliferation of primary granule cell precursors. Our study prioritizes dosage-sensitive chromosome 21 genes for future mechanistic studies. Identification of the genes that modulate SHH signaling may suggest new therapeutic avenues for ameliorating Down syndrome phenotypes.


Assuntos
Síndrome de Down , Proteína HMGN1 , Camundongos , Humanos , Animais , Síndrome de Down/genética , Proteínas Hedgehog/metabolismo , Cromossomos Humanos Par 21/genética , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Transdução de Sinais
14.
Yonago Acta Med ; 66(1): 24-35, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36820298

RESUMO

Background: Cytoplasmic mislocalization of TAR-DNA binding protein of 43 kDa (TDP-43) is a major hallmark of amyotrophic lateral sclerosis (ALS). TDP-43 aggregation is detected in the cortical and spinal motor neurons in most ALS cases; however, pathological mechanism of this mislocalized TDP-43 remains unknown. Methods: We generated a tetracycline-inducible TDP-43 A315T system on a mouse artificial chromosome (MAC) vector to avoid transgene-insertional mutagenesis, established a mouse embryonic stem (ES) cell line holding this MAC vector system, and investigated whether overexpressed exogenous TDP-43 A315T was mislocalized in the cytoplasm of the ES cell-derived neurons and triggered the neurotoxic effects on these cells. Results: Inducible TDP-43 A315T system was successfully loaded onto the MAC and introduced into the mouse ES cells. These ES cells could differentiate into motor neurons and interneurons. Overexpression of TDP-43 A315T by addition of doxycycline in both neurons resulted in mislocalization to cytoplasm. Mislocalized TDP-43 caused cell death of motor neurons, but not interneurons. Conclusion: Vulnerability to cytoplasmic mislocalized TDP-43 is selective on neuronal types, whereas mislocalization of overexpressed TDP-43 occurs in even insusceptible neurons. This inducible gene expression system using MAC remains useful for providing critical insights into appearance of TDP-43 pathology.

15.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778465

RESUMO

The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are due to sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.

16.
Drug Metab Dispos ; 51(3): 318-328, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36810197

RESUMO

Drug absorption from the gastrointestinal tract is often restricted by efflux transport by P-glycoprotein (P-gp) and metabolism by CYP3A4. Both localize in the epithelial cells, and thus, their activities are directly affected by the intracellular drug concentration, which should be regulated by the ratio of permeability between apical (A) and basal (B) membranes. In this study, using Caco-2 cells with forced expression of CYP3A4, we assessed the transcellular permeation of A-to-B and B-to-A directions and the efflux from the preloaded cells to both sides of 12 representative P-gp or CYP3A4 substrate drugs and obtained the parameters for permeabilities, transport, metabolism, and unbound fraction in the enterocytes (fent) using simultaneous and dynamic model analysis. The membrane permeability ratios for B to A (RBA) and fent varied by 8.8-fold and by more than 3000-fold, respectively, among the drugs. The RBA values for digoxin, repaglinide, fexofenadine, and atorvastatin were greater than 1.0 (3.44, 2.39, 2.27, and 1.90, respectively) in the presence of a P-gp inhibitor, thus suggesting the potential involvement of transporters in the B membrane. The Michaelis constant for quinidine for P-gp transport was 0.077 µM for the intracellular unbound concentration. These parameters were used to predict overall intestinal availability (FAFG) by applying an intestinal pharmacokinetic model, advanced translocation model (ATOM), in which permeability of A and B membranes accounted separately. The model predicted changes in the absorption location for P-gp substrates according to its inhibition, and FAFG values of 10 of 12 drugs, including quinidine at varying doses, were explained appropriately. SIGNIFICANCE STATEMENT: Pharmacokinetics has improved predictability by identifying the molecular entities of metabolism and transport and by using mathematical models to appropriately describe drug concentrations at the locations where they act. However, analyses of intestinal absorption so far have not been able to accurately consider the concentrations in the epithelial cells where P-glycoprotein and CYP3A4 exert effects. In this study, the limitation was removed by measuring the apical and basal membrane permeability separately and then analyzing these values using new appropriate models.


Assuntos
Citocromo P-450 CYP3A , Quinidina , Humanos , Quinidina/farmacologia , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Absorção Intestinal , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Permeabilidade
18.
Drug Metab Dispos ; 51(2): 174-182, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36379710

RESUMO

Knockout (KO) of mouse Cyp3a genes increases the expression of hepatic CYP2C enzymes, which can metabolize triazolam, a typical substrate of human CYP3A. There is still marked formation of 1'-hydroxytriazolam in Cyp3a-KO (3aKO) mice after triazolam dosing. Here, we generated a new model of humanized CYP3A (hCYP3A) mice with a double-KO background of Cyp3a and Cyp2c genes (2c3aKO), and we examined the metabolic profiles of triazolam in wild-type (WT), 2c3aKO, and hCYP3A/2c3aKO mice in vitro and in vivo In vitro studies using liver microsomes showed that the formation of 1'-hydroxytriazolam in 2c3aKO mice was less than 8% of that in WT mice. The formation rate of 1'-hydroxytriazolam in hCYP3A/2c3aKO mice was eightfold higher than that in 2c3aKO mice. In vivo studies showed that area under the curve (AUC) of 1'-hydroxytriazolam in 2c3aKO mice was less than 3% of that in WT mice. The AUC of 1'-hydroxytriazolam in hCYP3A/2c3aKO mice was sixfold higher than that in 2c3aKO mice. These results showed that formation of 1'-hydroxytriazolam was significantly decreased in 2c3aKO mice. Metabolic functions of human CYP3A enzymes were distinctly found in hCYP3A mice with the 2c3aKO background. Moreover, hCYP3A/2c3aKO mice treated with clobazam showed human CYP3A-mediated formation of desmethylclobazam and prolonged elimination of desmethylclobazam, which is found in poor metabolizers of CYP2C19. The novel hCYP3A mouse model without mouse Cyp2c and Cyp3a genes (hCYP3A/2c3aKO) is expected to be useful to evaluate human CYP3A-mediated metabolism in vivo SIGNIFICANT STATEMENT: Humanized CYP3A (hCYP3A/2c3aKO) mice with a background of double knockout (KO) for mouse Cyp2c and Cyp3a genes were generated. Although CYP2C enzymes played a compensatory role in the metabolism of triazolam to 1'-hydroxytriazolam in the previous hCYP3A/3aKO mice with Cyp2c genes, the novel hCYP3A/2c3aKO mice clearly showed functions of human CYP3A enzymes introduced by chromosome engineering technology.


Assuntos
Triazolam , Humanos , Camundongos , Animais , Triazolam/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Clobazam , Camundongos Knockout , Microssomos Hepáticos/metabolismo
19.
Sci Rep ; 12(1): 21790, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526651

RESUMO

Homology-directed repair-mediated knock-in (HDR-KI) in combination with CRISPR-Cas9-mediated double strand break (DSB) leads to high frequency of site-specific HDR-KI. While this characteristic is advantageous for generating genetically modified cellular and animal models, HDR-KI efficiency in mammalian cells remains low. Since avian DT40 cells offer distinct advantage of high HDR-KI efficiency, we expanded this practicality to adapt to mammalian research through sequential insertion of target sequences into mouse/human artificial chromosome vector (MAC/HAC). Here, we developed the simultaneous insertion of multiple fragments by HDR method termed the simHDR wherein a target sequence and selection markers could be loaded onto MAC simultaneously. Additionally, preparing each HDR donor containing homology arm by PCR could bypass the cloning steps of target sequence and selection markers. To confirm the functionality of the loaded HDR donors, we constructed a MAC with human leukocyte antigen A (HLA-A) gene in the DT40 cells, and verified the expression of this genomic region by reverse transcription PCR (RT-PCR) and western blotting. Collectively, the simHDR offers a rapid and convenient approach to generate genetically modified models for investigating gene functions, as well as understanding disease mechanisms and therapeutic interventions.


Assuntos
Sistemas CRISPR-Cas , Reparo de DNA por Recombinação , Camundongos , Animais , Humanos , Sistemas CRISPR-Cas/genética , Cromossomos Artificiais , Genoma , Reação em Cadeia da Polimerase , Edição de Genes , Mamíferos/genética
20.
Pharmacol Res Perspect ; 10(6): e01030, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424908

RESUMO

UDP-glucuronosyltransferases (UGTs) catalyze the conjugation of various substrates with sugars. Since the UGT2 family forms a large cluster spanning 1.5 Mb, transgenic mouse lines carrying the entire human UGT2 family have not been constructed because of limitations in conventional cloning techniques. Therefore, we made a humanized mouse model for UGT2 by chromosome engineering technologies. The results showed that six UGT2 isoforms examined were expressed in the liver of adult humanized UGT2 (hUGT2) mice. Thus, the functions of human UGT2B7 in the liver of hUGT2 mice were evaluated. Glucuronide of azidothymidine (AZT, zidovudine), a typical UGT2B7 substrate, was formed in the liver microsomes of hUGT2 mice but not in the liver microsomes of wild-type and Ugt2-knockout mice. When AZT was intravenously administered, AZT glucuronide was detected in the bile and urine of hUGT2 mice, but it was not detected in the bile and urine of wild-type and Ugt2-knockout mice. These results indicated that the hUGT2 mice express functional human UGT2B7 in the liver. This finding was also confirmed by using gemfibrozil as an alternative UGT2B7 substrate. Gemfibrozil glucuronide was formed in the liver microsomes of hUGT2 mice and was mainly excreted in the bile of hUGT2 mice after intravenous dosing of gemfibrozil. This hUGT2 mouse model will enable improved predictions of pharmacokinetics, urinary and biliary excretion and drug-drug interactions mediated by human UGT2, at least UGT2B7, in drug development research and basic research.


Assuntos
Glucuronídeos , Zidovudina , Humanos , Camundongos , Animais , Glucuronídeos/metabolismo , Genfibrozila , Camundongos Knockout , Camundongos Transgênicos , Cromossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...